ORIGINAL ARTICLE

Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells

Qingsong Zhu · Yi Huang · Laurence J. Marton · Patrick M. Woster · Nancy E. Davidson · Robert A. Casero Jr.

Received: 8 February 2011/Accepted: 26 March 2011/Published online: 30 July 2011 © Springer-Verlag 2011

Abstract Aberrant epigenetic repression of gene expression has been implicated in most cancers, including breast cancer. The nuclear amine oxidase, lysine-specific demethylase 1 (LSD1) has the ability to broadly repress gene expression by removing the activating mono- and dimethylation marks at the lysine 4 residue of histone 3 (H3K4me1 and me2). Additionally, LSD1 is highly expressed in estrogen receptor α negative (ER−) breast cancer cells. Since epigenetic marks are reversible, they make attractive therapeutic targets. Here we examine the

Electronic supplementary material The online version of this article (doi:10.1007/s00726-011-1004-1) contains supplementary material, which is available to authorized users.

O. Zhu · R. A. Casero Jr.

The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA

Y. Huang · N. E. Davidson Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA

L. J. Marton

Department of Laboratory Medicine, The University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA

P. M. Woster

Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA

R. A. Casero Jr. (

)

Department of Oncology, Johns Hopkins University, Bunting-Blaustein Cancer Research Building 1, Room 551, 1650 Orleans Street, Baltimore, MD 21231, USA e-mail: rcasero@jhmi.edu effects of polyamine analog inhibitors of LSD1 on gene expression, with the goal of targeting LSD1 as a therapeutic modality in the treatment of breast cancer. Exposure of the ER-negative human breast cancer cells, MDA-MB-231 to the LSD1 inhibitors, 2d or PG11144, significantly increases global H3K4me1 and H3K4me2, and alters gene expression. Array analysis indicated that 98 (75 up and 23 down) and 477 (237 up and 240 down) genes changed expression by at least 1.5-fold or greater after treatment with 2d and PG11144, respectively. The expression of 12 up-regulated genes by 2d and 14 up-regulated genes by PG11144 was validated by quantitative RT-PCR. Quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated that up-regulated gene expression by polyamine analogs is associated with increase of the active histone marks H3K4me1, H3K4me2 and H3K9act, and decrease of the repressive histone marks H3K9me2 and H3K27me3, in the promoter regions of the relevant target genes. These data indicate that the pharmacologic inhibition of LSD1 can effectively alter gene expression and that this therapeutic strategy has potential.

Keywords Epigenetics · Chromatin · Histone methylation · Acetylation · Gene silencing

Abbreviations

Aza 5-Azacytidine

LSD1 Lysine-specific demethylase 1 DNMT DNA methyltransferase

GAPDH Glyceraldehyde 3-phosphate dehydrogenase

HDAC Histone deacetylase
ODC Ornithine decarboxylasae
H3K4 Lysine 4 of histone 3

H3K9act Acetylated lysine 9 of histone 3

H3K27 Lysine 27 of histone 3

me1 Monomethyl me2 Dimethyl me3 Trimethyl

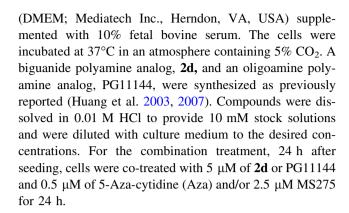
ChIP Chromatin immunoprecipitation

mt1f Metallothionein 1F

nupr Nuclear protein/transcription regulator 1

egr1 Early growth response 1 cdh16 Cadherin 16/KSP-cadherin

Introduction


Epigenetic regulation of gene expression is dysregulated in many cancers, including breast cancer. In addition to changes in DNA CpG island methylation, covalent modifications of histone proteins play a critical role in the aberrant silencing of various tumor suppressor genes (Wolffe and Matzke 1999; Kondo et al. 2003). Although histone acetylation is typically associated with actively transcribed genes, the effect of histone methylation is greatly dependent on the specific histone residue that is methylated and its methylation status. Di-methylation of lysine 9 of histone 3 (H3K9me2) is associated with gene repression, while methylation (mono-, di- and tri-methylation) of lysine 4 of histone 3 is associated with active gene transcription (Snowden et al. 2002; Barski et al. 2007). Lysine-specific demethylase 1 (LSD1) can specifically demethylate mono- and di-methyl H3K4, and thus has the potential to broadly repress gene expression (Barski et al. 2007; Wang et al. 2009). Importantly, LSD1 protein expression and activity have been demonstrated to be elevated in multiple tumor types, including breast cancer, thus suggesting an additional basis for tumor selectivity (Schulte et al. 2009; Lim et al. 2010).

Our previous studies demonstrated that a novel class of polyamine analogs can effectively inhibit LSD1 and induce re-expression of several aberrantly silenced genes (Huang et al. 2007, 2009). The purpose of this study was to examine the molecular effects of two specific polyamine analog LSD1 inhibitors, **2d** and PG11144, each of which represents a different class of analog, on global gene expression in estrogen receptor-negative breast cancer cells. The possible mechanisms of polyamine analogmediated modulation of gene expression were also investigated.

Materials and methods

Cell culture

The ER-negative human breast cancer cell line, MDA-MB-231 was cultured in Dulbecco's modified Eagle's medium

MTT assay and polyamine content

Growth inhibition was determined using the MTT assay as described previously (Huang et al. 2004). Briefly, cells were seeded at a density of 3,000 cells/well in 96-well plates and allowed to grow overnight. Medium was aspirated and replaced with fresh medium and treated with appropriate concentrations of compounds using appropriate controls. After treatment, 200 μ l of MTT reagent (1 mg/ml) were added to each well and incubated at 37°C incubator for 4 h allowing viable cells to reduce the MTT to dark-blue formazan crystals. The absorbance was measured at 570 nm using a microplate reader. Growth inhibition was measured by comparing A₅₉₅ of treated cells to that of untreated controls, which were set as 100%.

The intracellular polyamine concentration of cells was determined by the pre-column dansylation, reversed phase high-performance liquid chromatography methods as previously published (Kabra et al. 1986).

Nuclear protein preparation and Western Blotting

Nuclear proteins were prepared using the NE-PER nuclear and cytoplasmic extraction reagents (Pierce, Rokford, IL, USA) following the manufacturer's instructions. 20 µg of nuclear proteins were fractionated on 4–12% NuPAGE Bis–Tris gels and transferred onto PVDF membranes. Primary antibodies against H3K4me1 (07-458) and H3K4me2 (07-030) were purchased from Millipore. The Odyssey Infrared Detection System (LI-COR Biosciences, Lincoln, NE, USA) was used to quantify relative amounts of proteins.

Microarray and data analysis

Microarray expression profiling was performed by the Microarray Core Facility of The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. Total RNA from treated and untreated MDA-MB-231 cells was

extracted using Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to the instructions provided by the manufacturer. RNA was re-purified using RNeasy mini kit (Invitrogen, Carlsbad, CA, USA). cDNA was then synthesized, amplified and labeled with Cy5-dUTP and Cy3dUTP for two-color microarray-based gene expression analysis, respectively using Superscript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA). The labeled cDNA was hybridized to the Agilent whole human genome microarrays (G4112F, Agilent Technologies, Palo Alto, CA, USA), which contain 45,015 features representing 41,000 unique probes including 26,605 genes with RefSeq or UniGene accession number. The hybridized arrays were scanned with an Agilent G2505B scanner controlled by Agilent scan control 7.0 software according to Agilent Technologies standard operation procedures. Data were extracted with Agilent Feature Extraction 9.1 software. Differentially expressed targets were identified using processed data and P value Log ratio generated by the software. Data were normalized using Feature Extraction software and analyzed with Genespring GX software (Agilent Technologies).

Reverse transcription quantitative PCR (RT-qPCR)

Total RNA extraction from treated and untreated cells was performed as described above. Reverse transcription (RT) was carried out using Superscript II reverse transcriptase (Invitrogen, Carlsbad, CA, USA) after pretreatment with RNase-free DNase I (Roche, Indianapolis, IN, USA). The primer sequences for each gene are shown in Table 1. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an internal control. The comparative cycle threshold (Ct) method was used to quantify relative gene expression level.

Chromatin immunoprecipitation

The EZ Chip kit (Millipore, Billerica, MA, USA) was used for chromatin immunoprecipitation assays. Cells were

Table 1 Primers used for RT-qPCR to verify array-identified genes

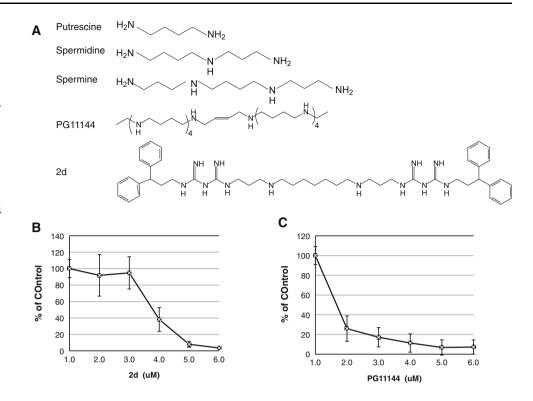
Gene	Primer	Sequence	Gene	Primer	Sequence	
mt1f	F	CCTGCACCTGCGCTGGTTCC	aardc4	F	TTCTCGGAGGTGGAGTACCTG	
	R	ACAGCCCTGGGCACACTTGC		R	CCAAAGGTTCAGATGGAAGTTGA	
mt1x	F	GGACCCCAACTGCTCCTGCTC	rrad	F	AGGGCACACCTATGATCGCT	
	R	TTTGCAGATGCAGCCCTGGGC		R	CCCTTGTCCGTCACTGAGT	
nupr1	F	CTGCGGAGGAAGGAGGAC	txnip	F	GGTCTTTAACGACCCTGAAAAGG	
	R	CTCAGTCAGCGGGAATAAGTC		R	CGAAGTCTGTTTGCACTGCT	
mt1m	F	CTAGCAGTCGCTCCATTTATCG	cdh16	F	CTTTATACCTGACCAAGTTGCCG	
	R	CAGCTGCAGTTCTCCAACGT		R	TGACCTGTAGCTGGTACTCTG	
mt1e	F	TGCGCCGGCTCCTGCAAGTGC	atf3	F	GAGGATTTTGCTAACCTGACGC	
	R	ATGCCCCTTTGCAGACGCAGC		R	GGCTACCTCGGCTTTTGTGAT	
mt2a	F	CTCTTCAGCACGCCATGGAT	dusp1	F	CAGTACCCCACTCTACGATCA	
	R	CGCGTTCTTTACATCTGGGA		R	ACCCTCAAAATGGTTGGGACA	
ddit4	F	AGACACGGCTTACCTGGATG	wnk4	F	GCGCTCTTCTCGTCTCAGC	
	R	CTGGCTTACCAACTGGCTAGG		R	GGGGTTCTTTGGAGCTAGGC	
stk32b	F	CAGCAGAATGTGCATTTCACAG	hdac9	F	AGCCCATCTCACCTTTAGACC	
	R	ACCGTCGCTATGTTGAAGTCT		R	GTGCTGCCGTGTCAAGTTC	
ifit2	F	ATGTGCAACCTACTGGCCTAT	ccnb1ip	F	TATCGAAAGTGTCGCATCAAACT	
	R	TGAGAGTCGGCCCATGTGATA		R	AGGCAGGACAGATAGCTGGT	
slc301A1	F	TACATGGAGGTGGCTAAAACA	id2	F	GACCCGATGAGCCTGCTATAC	
	R	TGTCCCACAACATTGCTTCAAA		R	AATAGTGGGATGCGAGTCCAG	
slc301A2	F	CGGCAATCCGGTCATACAC	serpine1	F	ATTCAAGCAGCTATGGGATTCAA	
	R	AGATGGCAGAGGCTACATACAG		R	CTGGACGAAGATCGCGTCTG	
gdf15	F	GGGCAAGAACTCAGGACGG	tex14	F	CCTGAAGAAGATAGACTCCCCG	
	R	TCTGGAGTCTTCGGAGTGCAA		R	GAGCAGAAATGACTCCAGCTTT	
egr1	F	GGTCAGTGGCCTAGTGAGC	dusp2	F	TGTCCCGATCTGTGCTCTGA	
	R	TGCTGTCGTTGGATGGCAC	-	R	ACCCTGGTCGTAGACAGGAG	

cross-linked with 37% formaldehyde to final concentration of 1% at room temperature for 10 min. Cross-linking was stopped and unreacted formaldehyde was quenched by adding glycine to a final concentration of 0.125 M. Cells were washed in cold PBS twice and sonicated with a microtip ultransonicator on ice $6 \times$ for 10 s each. Anti-H3 (ab1791, Abcam), -H3K4me1 (07-458, Millipore), -H3K4me2 (07-303, Millipore), -H3K9act (17-609, Millipore), -H3K9me2 (07-441, Millipore) and -H3K27me3 (07-449, Millipore) were subsequently incubated, where indicated, with soluble chromatin on a rotating platform overnight at 4°C. The antibody/DNA complex was collected by binding with 60 µl of protein A/G agarose. The agarose was washed with wash buffer and TE buffer. The precipitated chromatin was eluted from the agarose beads. Reversal of cross-links was carried out by incubation at 65°C overnight followed by RNase and proteinase K treatment. DNA was purified using a MinElute Reaction cleanup spin column (Qiagen, Valencia, CA, USA). qPCR was carried out to quantify precipitated DNA using gene specific primers which are spanning -1,000 to +500 bp around the transcription start site of each gene (Table 2).

Results

Cell growth inhibition by 2d and PG11144

Approximately 25% of breast cancer patients have tumors that are ER-negative and do not benefit from endocrine therapies. For these patients, treatment options are limited. Lysine-specific demethylase 1 (LSD1) was found highly expressed in ER-negative breast cancers and may represent a valid biomarker for the aggressive, hormone unresponsive breast tumors (Lim et al. 2010). Importantly, it may also represent an important therapeutic target. Our group has identified novel classes of polyamine analogs that can inhibit LSD1 activity (Huang et al. 2007; Huang et al. 2009). To test the efficacy of these newly identified analogs in ER-negative (ER-) breast cancer cells, we chose the biguanide analog, 2d and the oligoamine analog, PG11144 (Fig. 1a) and used the ER- cell line, MDA-MB-231 as a model. Both 2d and PG11144 inhibited growth of MDA-MB-231 cells in a time- and dose-dependent manner (Fig. 1b, c). The observed IC₅₀ for 2d is $\leq 6 \mu M$ and <1 µM for PG11144 for a 96 h treatment.


Table 2 Primers used for chromatin immunoprecipitation analysis

Gene Primer		Sequence		Gene	Primer	Sequence		
egrl	A	F	ACTAGGGAACAGCCTTTCG	mt1f	A	F	GGCACAGACTCAACCTTAAGCA	
		R	CTATGGCACGGTGTCTTTC			R	ATCGCACCATTTTTGCACTC	
	В	F	ACACCGTGCCATAGATCGAG		В	F	CGCCTTCAGTGATCTCGCTTC	
		R	GTTCTATCGCTGTCATCCAGG			R	TCTCTAGCATTGCCTGTCCCTG	
	C	F	TGGATGACAGCGATAGAACC		C	F	CGAAGGTCACATCCTCGGCCTG	
		R	CTCCAAATAAGGTGCTGCC			R	ATTGCCTGCTACACCCGCCC	
	D	F	ACCTTATTTGGAGTGGCCC		D	F	GGCGAAACTGGGAAGGGCG	
		R	GGAAGCCCTAATATGGCAGG			R	GCAGGTGGAAGGCGTGGTG	
	E	F	CCGTTCCAGACCCTTCAAATAG		E	F	CCCACTGCTTCTTCGCTTCTC	
		R	AACACTGAGAAGCGTGCAG			R	GTACCCTCAACGCTGACACAG	
	F	F	TGCACGCTTCTCAGTGTTC		F	F	AGGCTCAAGGCTGTCCTGCTCC	
		R	GTTGCTCAGCAGCATCATC			R	CTGTCCTGAACCCCGAAGAGGC	
cdh16	A	F	CCCCTCATTCCAGACTCCCAG	nupr1	A	F	GAGACAGGGTCTCCCTCTGT	
		R	GTGAGCAGTACATGAGTGGAAGTG			R	GTTGGAGAGTTCAGGGTCTG	
	В	F	CACCCATCCTTTGCAACCTCCAG		В	F	CTAGGTGAGGGAGATTACATTAC	
		R	CCCTCACACCATGCCATGTGC			R	CCGAATAGCTGGGATTATAG	
	C	F	AGGGCATTCCCAGAGGAGG		C	F	AGGAGAATTGCTTGAACCTG	
		R	AGCACAGCCCAGGAGGTATTC			R	AGATGCAGGACGTGAGGAAG	
	D	F	GGAGTGCCAGGCCAACCATC		D	F	CTTCCTCACGTCCTGCATCT	
		R	ACTGGCTCCCTTGGTCCAGC			R	ATCCAGCCCAGTAAACACAG	
	E	F	AAGGGAGCCAGTCTTGGGCG		E	F	CCTGCCTCTCTTCTTCTCCT	
		R	TTCCAGCCCTTGTCATGGAGC			R	CCTGCCTCTCTTCTTCTCCT	
	F	F	GGAAAATGATGAGACAAGGGCCG		F	F	AAGAGAGGCAGGGAAGACAA	
			AGACTTGGAGGGTCACTTCCTG			R	GATTTCGGGAGAGGAGGAAG	

Fig. 1 Cell growth inhibition by polyamine analogs. a Structures of natural polyamines and polyamine analogs used in this study. Effects of 2d (b) and PG11144 (c) on the growth of MDA-MB-231 cells. MDA-MB-231 cells were seeded at a density of 3,000 cells/well in 96-well plates and allowed to grow overnight. Media was aspirated and replaced with fresh media and treated with increased concentration of 2d or PG11144 for 96 h. After treatment, cell viability was measured by adding 200 µl of MTT reagent (1 mg/ml) were added to each well and incubated at 37°C incubator for 4 h. The absorbance was measured at 570 nm using a microplate reader. The results are the mean ± SE of three independent experiments performed in triplicate

Table 3 Intracellular polyamine concentrations of analog-treated cells

	Put (nmol/mg protein)		Spd (nmol/mg	protein)	Spm (nmol/mg protein)	
	24 h	48 h	24 h	48 h	24 h	48 h
Control	N/A	0.625 ± 0.048	10.97 ± 0.53	12.23 ± 0.78	14.02 ± 0.99	15.62 ± 1.40
2d	N/A	N/A	7.78 ± 1.71	7.15 ± 0.31	19.93 ± 4.32	18.28 ± 1.98
PG11144	N/A	N/A	6.36 ± 2.46	0.77 ± 0.03	8.84 ± 1.61	4.66 ± 0.70

As polyamine analogs can mimic natural polyamines in their regulation of polyamine metabolism, the cellular polyamine content after 48 h of **2d** or PG11144 treatment was determined. PG11144 treatment reduced the levels of all three intracellular polyamines in MDA-MB-231 cells. By contrast, **2d** treatment led to reduced putrescine (Put) and spermidine (Spd) levels and a slight increase in spermine (Spm) was observed (Table 3).

Induced ER α expression in MDA-MB-231 cells by inhibiting LSD1

It has been demonstrated that there are densely methylated CpG islands at the ER α promoter region in MDA-MB-231 cells (Ottaviano et al. 1994). By inhibiting DNA methyltransferase (DNMT) and/or histone deacetylase (HDAC) activity using the pharmacological modulators of DNMT and HDAC, Aza and/or TSA, ER α expression was induced (Ferguson et al. 1997; Yang et al. 2001; Yan et al. 2003). To test if polyamine analog-induced inhibition of LSD1 could also induce ER α expression, we first determined dose- and time-dependent growth responses for **2d** and

PG11144 (data not shown). To optimize ER gene reexpression while maintaining minimum cellular toxicity, 5 μ M of **2d** or PG11144 was used in our treatments. As shown in Fig. 2, ER α mRNA was induced three to five-fold by treatment with **2d** or PG11144, respectively. There are no synergistic effects when **2d** was co-treated with the DNMT inhibitor Aza, and only a slight additive effect when it was combined with Aza and MS-275. For PG11144, although there is an additive effect between Aza and MS-275, no synergistic or additive effects were detected when all three agents were combined.

Gene expression profiles after 2d or PG11144 treatment in MDA-MB-231 cells

Previous studies have used a candidate gene approach to examine the effects of LSD1 Inhibition on gene expression (Huang et al. 2007, 2009). To obtain a more comprehensive genome-wide profile of genes whose expression is altered by inhibiting LSD1, RNA from **2d-** or PG11144-treated samples were analyzed using the Agilent 44 K human genome microarrays. Overall, after a 24 h treatment,

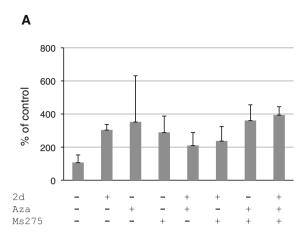
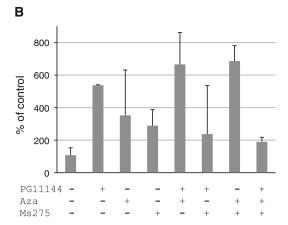



Fig. 2 Effects of LSD1 inhibitors and DNMT inhibitor and/or HDAC inhibitor on ER α expression. MDA-MB-231 cells were treated with LSD1 inhibitor 2d (a) or PG11144 (b) alone or with DNMT inhibitor (Aza) and/or HDAC inhibitor (MS275) for 24 h. Total RNA was

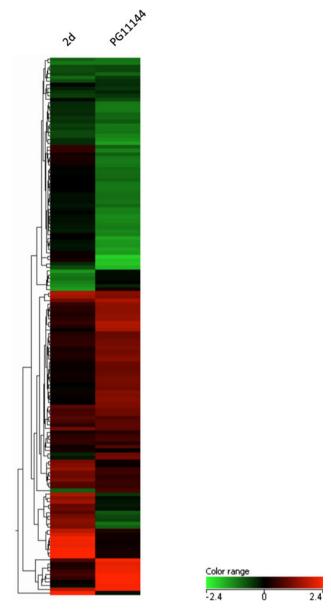
expression of 98 genes was changed by equal or more than 1.5-fold by 2d. These genes are involved in cell cycle regulation, apoptosis and DNA synthesis. Among these genes, the most prominently up-regulated genes were the stress response genes, antioxidant metallothionein 1 (*mt1f*, *mt2a*, *mt1e*, *mt1x*, *mt1 m*, *mt1b*, *mt1 g*, *mt1 h*, *mt1a*,), DNA-damage-inducible transcript 4 (*ddit4*), and activating transcription factor 3 (*atf3*). A total of 477 genes were observed to be modulated by PG11144 treatment with changes of 1.5-fold or greater (Fig. S1). The heat map generated by GeneSpring GX 9 using Pearson's correlation for similarity measure and an average linkage clustering algorithm (Fig. 3) demonstrates the differences and similarities between the two LSD1 inhibitors.

Functional pathway analysis

To investigate the biological relevance from the datasets representing altered gene expression after 2d or PG11144 treatment, we conducted a functional pathway analysis using the Ingenuity Pathway Analysis (IPA) application. 70 of 98 2d-modulated genes and 429 of 477 PG11144 modulated genes were mapped to define genetic networks in the IPA knowledge database. There are 4 and 22 networks, where the score is ≥ 10 [-Log (P value) ≥ 10], that are altered by **2d** and PG11144, respectively. Among these networks, four of them were altered by both 2d and PG11144. These networks were associated with gene expression, cell death, proliferation and cellular movement/ morphology pathways. Representative gene networks that were modulated by 2d and PG11144 are provided in Fig. S1. Fig. S1B depicts a network centered on MYC and $TGF\beta$. The genes within the network correspond to cell cycle, cellular growth, proliferation and cell death genes. Fig S1F depicts a network modulated by PG11144 that is

extracted and cDNA was synthesized. The qRT-PCR was used to measure the gene expression. GAPDH expression was used as an internal control. The results are the mean \pm SE of three independent experiments performed in triplicate

associated with cell cycle, cancer and cellular movement genes. These data demonstrate that many of **2d-** or PG11144-regulated genes are functionally connected in the form of biologically relevant gene networks and are associated with numerous critical cellular processes (Fig. 4).


qRT-PCR validation of microarray data

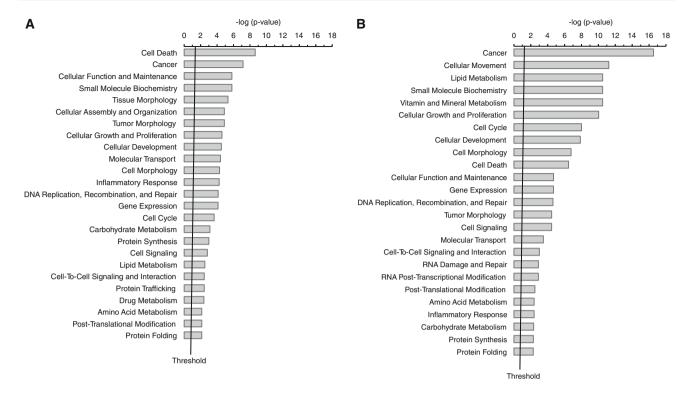
To validate the microarray results, we chose a total of 26 genes whose expression level were either upregulated by 2d or PG11144 in the microarray analysis. The same set of mRNAs used for microarray analysis was reverse transcribed and qPCR was conducted to measure the gene expression using pairs of gene-specific primers (Table 1). A pair of primers for *GAPDH* was used for normalization. In the selected 26 genes, half of them were highly induced by 2d or PG11144 (5- to 30-fold induction) and half of them were induced by one- to fivefold. Thus, the qPCR results were consistent with microarray results for all of the selected 26 candidate genes (Fig. 5).

2d and PG11144 treatment changes chromatin structure

Our previous study demonstrated that treatment of HCT116 human colon adenocarcinoma cells with **2d** or PG11144 results in increased H3K4 methylation (Huang et al. 2007, 2009) and re-expression of aberrantly silenced genes. To assess if **2d** and PG11144 could inhibit LSD1 activity and affect global H3K4 methylation in MDA-MB-231 cells, cells were exposed to increasing concentrations of **2d** or PG11144 for 48 or 72 h, respectively. Treatment with **2d** or PG11144 significantly increases both global H3K4me1 and H3K4me2 levels, which are specific substrates of LSD1 (Fig. 6a). These results demonstrate that **2d** and PG11144 functionally inhibit LSD1 activity in MDA-MB-231 cells.

Fig. 3 2d and PG11144 modulate gene expression. Clustering of the expression profiles of genes that displayed at least a 1.5-fold change after treatment of MDA-MB-231 cells with 5 μ M **2d** or PG11144 for 24 h. *Each horizontal bar* represents one gene. The *bar color* indicates the relative transcription level from *green* (*low*) to *red* (*high*)

To determine if increased global H3K4 methylation caused by **2d** and PG11144 treatment was accompanied by local chromatin changes and changes in gene transcription, we chose four genes, *mt1f*, *nupr*, *egr1*, and *cdh16*, whose expression was induced by 2d or PG11144 to measure the levels of promoter-associated H3K4 methylation. Gene expression of *mt1f* and *nupr1* was induced 18- and 12-fold, respectively, by **2d**. The expression of the *egr1* and *cdh16* genes was upregulated 33- and 10-fold, respectively, by PG11144 (Fig. 5). Quantitative ChIP analyses were


performed to evaluate the effect of LSD1 inhibitors on histone marks in the promoter regions of these genes. Primers spanning the proximal promoter region from approximately -1,000 to +500 bp relative to the transcriptional start site (TSS) (Fig. 6b) for each gene was designed for use in these analyses. MDA-MB-231 cells were exposed to 5 μM 2d or PG11144 for 24 h and then analyzed for changes in methylation of promoter-associated H3K4. ChIP-qPCR results revealed that 2d or PG11144-induced gene induction was accompanied by increases of H3K4me1 (Fig. 6c) and H3K4me2 (Fig. 6d) at the promoters. The elevated local enrichment of H3K4 methylation is consistent with the findings of up-regulated gene expression and global H3K4 methylation. The H3K4me1 and H3K4me2 around the promoter region of mt1f and cdh16 were significantly increased by 2d and PG11144, respectively. The H3K4me1 and H3K4me2 around the promoter region of nupr1 and egr1 were also increased.

To provide an overall view of the local chromatin modulation by the LSD1-inhibiting analogs, we expanded our CHIP-qPCR analysis to other histone marks. Dimethylation of H3K9 (H3K9me2) has been implicated in heterochromatin formation and gene silencing (Barski et al. 2007). While acetylation of H3K9 (H3K9act) is enriched in the promoter region of activated genes (Bernstein et al. 2005; Roh et al. 2005; Heintzman et al. 2007). The ChIPqPCR results show that both 2d and PG11144 enhanced the level of the activating mark, H3K9ac, and decreased the repressive mark, H3K9me2, in the promoter regions of the genes studied, with the exception of *mt1f* (Fig. 7) where the increase in acetylation of H3K9 was not observed. We also measured the level of the transcriptional repressive polycomb mark, H3K27me3. At the promoter region, treatment with either 2d or PG11144 resulted in a decrease of H3K27me3 occupancy (Fig. 7).

Discussion

Endocrine therapy is the front line therapy for the ERpositive breast cancer patients. Unfortunately, about 25% of breast cancer tumors are ER-negative and these tumors are more aggressive and resistant to hormonal therapy (Putti et al. 2005; Carey et al. 2007). The need for new therapeutic targets and new therapeutic strategies is urgent. LDS1 was found to be highly expressed in ERnegative breast cancers and is a predictive marker for tumor progression, suggesting that LSD1 might be a novel epigenetic target for breast cancer therapy (Schulte et al. 2009; Lim et al. 2010). LSD1 functions as a flavindependent amine oxidase that catalyzes the removal of mono- and di-methylation of lysine 4 of histone 3

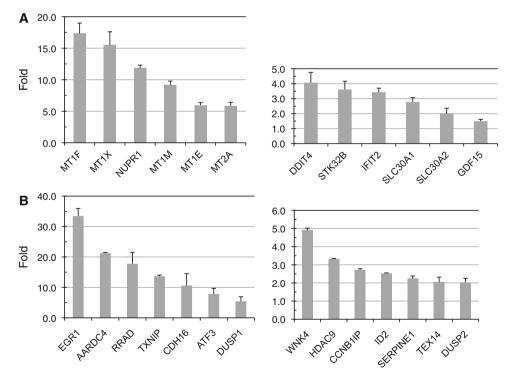
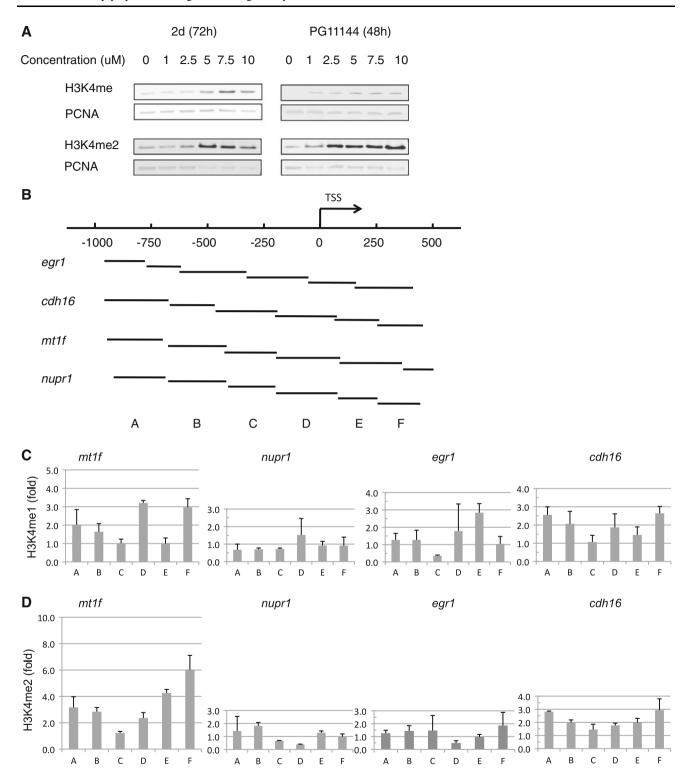


Fig. 4 Functional analysis of genes whose expression is modulated by **2d** (a) or PG11144 (b). The *bar graphs* were identified by Ingenuity Pathway Analysis (IPA). 70 of 98 **2d** regulated genes and 427 of 477 PG11144 regulated genes were mapped to defined genetic

networks in IPA knowledge database. Fisher's exact test was used to calculate the significance, *P* value. The *threshold line* shows the cutoff for significance (*P* value 0.05)


Fig. 5 Up-regulated gene expression by 2d and PG11144. Real-time reverse transcription PCR (RT-qPCR) was used to measure relative expression levels compared to untreated sample. 2d and PG11144 up-regulated genes are shown in (a) and (b), respectively. The results are mean \pm SE of three independent experiments performed in triplicate

(H3K4me and H3K4me2) (Shi et al. 2004) and it is associated with suppression of transcription. Methylation of histone 3 at lysine 4 is typically linked to active gene

transcription. Our previous studies demonstrated that novel classes of polyamine analogs can effectively inhibit LSD1 activity and induce re-expression of epigenetically

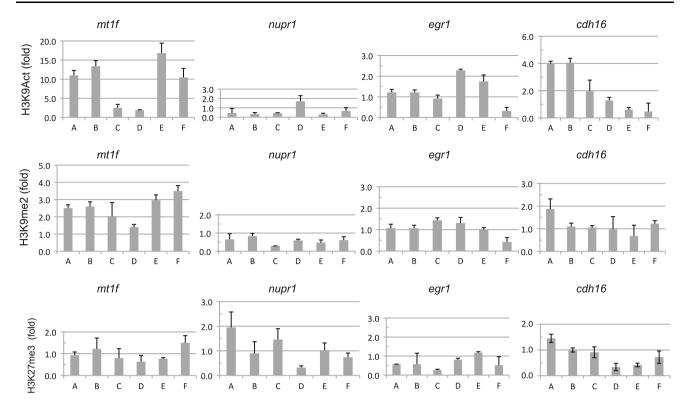


Fig. 6 2d and PG11144 treatment alters the global and local level of mono-methylation of lysine 4 of histone 3 (H3K4me) and dimethylation of lysine 4 of histone 3 (H3K4me2). Nuclear histones were prepared from MDA-MB-231 cells after treatment with 5 μ M **2d** or PG11144 for 72 h or 48 h, respectively. Proteins were fractionated by NuPAGE and global levels of H3K4me and H3K4me2 were detected with anti-H3K4me and H3K4me2 antibody

(a). Six sets of primers (a–e) were designed spanning from -1,000 to +500 around the transcription sites of egrl, cdh16, mtlf and nuprl that were upregulated by 2d or PG11144 treatment (b). Local H3K4me1 and H3K4me2 levels around the TSS were measured by chromatin immunoprecipitation followed by qPCR (c) and (d), respectively. The results are the mean \pm SE of three independent experiments performed in triplicate

Fig. 7 2d and PG11144 treatment changes the local level of acetylation of lysine 9 of histone 3 (H3K9Act, *top panel*), dimethylation of lysine 9 of histone 3 (H3K9me2, *middle panel*) and trimethylation of lysine 27 of histone 3 (H3K27me3, *bottom panel*). MDA-MB-231 cells were treated with **2d** or PG11144 for 24 h. Local

H3K9Act, H3K9me2 and H3K27me3 occupancies around the TSS were measured by CHIP-qPCR. mtlf and nuprl were upregulated by 2d and egrl and cdhl6 were upregulated by PG11144. The results are mean \pm SE of three independent experiments performed in triplicate

silenced tumor suppressor genes in colorectal cancer cells (Huang et al. 2007, 2009).

In the work presented here, inhibition of LSD1 using novel classes of polyamine analogs was investigated in MDA MB-231 ER-negative breast cancer cells, by both candidate and non-candidate approaches. **2d** and PG11144 inhibit MDA-MB-231 cell proliferation in a dose- and time-dependent manner. Both **2d** and PG11144 induce ER α expression alone or in combination with the DNMT inhibitor Aza and/or the HDAC inhibitor MS-275; however, we did not detect a significant upregulation of ER α expression with these LSD1 inhibitors in our microarray analyses. This is likely due to very low background expression of ER α and lack of sensitivity of the microarray analysis.

Compared with **2d**, PG11144 is more potent in the growth inhibition in MDA-MB-231 cells, which is consistent with our previous observations (Huang et al. 2003, 2007, 2009). It also appears that PG11144 has a more significant effect on gene expression, as evidenced by the greater number of genes whose expression is altered in response to treatment. This observation could be a result of more efficient in situ inhibition of LSD1, greater inhibition of growth, additional off target effects due to the oligo-amine's greater chromatin binding capabilities, or some

combination of these effects (Feuerstein et al. 1991; Basu et al. 1993; Huang et al. 2003, 2007). Additionally, it appears that PG11144 has a somewhat greater effect on polyamine homeostasis than 2d. This decrease in polyamines is not a result of significant changes in polyamine catabolism, but is likely a result of downregulation of ODC by ODC antizyme as demonstrated by Mitchell et al. (2002), and as we have previously observed (Huang et al. 2004, 2007). That alterations in polyamine or polyamine analog content can affect changes in chromatin has been well established. Gilmour et al. (Hobbs and Gilmour 2000; Hobbs et al. 2002, 2003, 2006 Wei et al. 2007) have demonstrated that changes in polyamines can lead to significant changes in chromatin acetylation. More importantly, the oligoamines have been shown to be potent inducers of nucleosomal array oligomerization (Carruthers et al. 2007), thus emphasizing their potential for direct effects on chromatin in addition to inhibition of LSD1. However, additional studies are required to determine the precise basis of the differential effects of these two polyamine analogs.

Inhibition of LSD1 by **2d** or PG11144 resulted in significant increases of global H3K4me1 and H3K4me2. The local H3K4 methylation proximal to the transcription start

sites of multiple genes was also significantly altered in a biphasic manner typically observed for actively transcribed genes, and is likely the result of a combination of nucleosomal positioning in concert with the repressive and/or activating complexes (Bernstein et al. 2006; Wang et al. 2008). The analog-induced change in chromatin marks was found to be gene- and location-specific. However, the general trend was that polyamine analogs enhanced both the global and local level of H3K4me and H3k4me2.

In order to have a better understanding of the local chromatin structure that surrounds the transcription start site region after inhibition of LSD1, we measured the levels of the active histone mark H3K9act and the heterochromatin marks H3K9me2 and H3K27me3. Inhibition of LSD1 leads to changes in the local level of these marks. In our current study, there was no evidence of wholesale inhibition of H3K9 methylation and we only observed a slight increase of H3K9me2 in the promoter of mt1f, but not in the other three genes tested. Although 2d and PG11144 are only known to directly inhibit LSD1 (Huang et al. 2007, 2009), it is not surprising that local levels of H3K9ac and H3K27me3 were also changed by inhibiting LSD1. As the inhibition of LSD1 clearly leads to increased expression of specific genes, the likely result is the recruitment of transcriptional activation complexes to the induced genes that contain histone acetyltransferases and JmjC containing demethylases, thereby resulting not only in an increase in the activating H3K4 methylation, but also an increase in the activating H3K9ac mark and a decrease in the repressive H3K9 and H3K27 methyl marks. These results are similar to those observed in cells treated with the DNMT inhibitors leading to the expression of silenced genes (Rhee et al. 2002; McGarvey et al. 2006, 2008).

Although the precise mechanisms responsible for changes in gene expression in response to the LSD1-inhibiting polyamine analogs are not entirely known, these analogs demonstrate considerable promise in targeting epigenetic regulation of gene expression in breast cancer. Additionally, our results suggest a therapeutic strategy for the treatment of ER-negative breast cancer either using these analogs alone, or in combination with HDAC and/or DNMT inhibitors, that merits further investigation.

Acknowledgments This work was funded by NIH grants CA51085, CA98454, and CA149095, Susan G. Komen for the Cure KG088923, and the Samuel Waxman Cancer Research Foundation.

References

Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

- Basu HS, Pellarin M, Feuerstein BG, Shirahata A, Samejima K, Deen DF, Marton LJ (1993) Interaction of a polyamine analogue, 1, 19-bis-(ethylamino)-5, 10, 15-triazanonadecane (BE-4-4-4-4), with DNA and effect on growth, survival, and polyamine levels in seven human brain tumor cell lines. Cancer Res 53:3948–3955
- Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR, Schreiber SL, Lander ES (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181
- Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326
- Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334
- Carruthers LM, Marton LJ, Peterson CL (2007) Polyamine analogues: potent inducers of nucleosomal array oligomerization and inhibitors of yeast cell growth. Biochem J 405:541–545
- Ferguson AT, Vertino PM, Spitzner JR, Baylin SB, Muller MT, Davidson NE (1997) Role of estrogen receptor gene demethylation and DNA Methyltransferase.DNA adduct formation in 5-aza-2'deoxycytidine- induced cytotoxicity in human breast cancer cells. J Biol Chem 272:32260–32266
- Feuerstein BG, Williams LD, Basu HS, Marton LJ (1991) Implications and concepts of polyamine-nucleic acid interactions. J Cell Biochem 46:37–47
- Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318
- Hobbs CA, Gilmour SK (2000) High levels of intracellular polyamines promote histone acetyltransferase activity resulting in chromatin hyperacetylation. J Cell Biochem 77:345–360
- Hobbs CA, Paul BA, Gilmour SK (2002) Deregulation of polyamine biosynthesis alters intrinsic histone acetyltransferase and deacetylase activities in murine skin and tumors. Cancer Res 62:67–74
- Hobbs CA, Paul BA, Gilmour SK (2003) Elevated levels of polyamines alter chromatin in murine skin and tumors without global changes in nucleosome acetylation. Exp Cell Res 290:427–436
- Hobbs CA, Wei G, DeFeo K, Paul B, Hayes CS, Gilmour SK (2006) Tip60 protein isoforms and altered function in skin and tumors that overexpress ornithine decarboxylase. Cancer Res 66:8116–8122
- Huang Y, Hager E, Phillips D, Dunn V, Hacker A, Frydman B, Kink J, Valasinas A, Reddy V, Marton L, Casero R Jr, Davidson N (2003) A novel polyamine analog inhibits growth and induces apoptosis in human breast cancer cells. Clin Cancer Res 9:2769–2777
- Huang Y, Keen JC, Hager E, Smith R, Hacker A, Frydman B, Valasinas AL, Reddy VK, Marton LJ, Casero RA Jr, Davidson NE (2004) Regulation of polyamine analogue cytotoxicity by c-Jun in human MDA-MB-435 cancer cells. Mol Cancer Res 2:81–88
- Huang Y, Greene E, Murray Stewart T, Goodwin AC, Baylin SB, Woster PM, Casero RA Jr (2007) Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc Natl Acad Sci USA 104:8023–8028
- Huang Y, Stewart TM, Wu Y, Baylin SB, Marton LJ, Perkins B, Jones RJ, Woster PM, Casero RA Jr (2009) Novel oligoamine

analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin Cancer Res 15:7217–7228

- Kabra PM, Lee HK, Lubich WP, Marton LJ (1986) Solid-phase extraction and determination of dansyl derivatives of unconjugated and acetylated polyamines by reversed-phase liquid chromatography: improved separation systems for polyamines in cerebrospinal fluid, urine and tissue. J Chromatogr 380:19–32
- Kondo Y, Shen L, Issa JP (2003) Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol 23:206–215
- Lim S, Janzer A, Becker A, Zimmer A, Schule R, Buettner R, Kirfel J (2010) Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 31:512–520
- McGarvey K, Fahrner J, Greene E, Martens J, Jenuwein T, Baylin S (2006) Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res 66:3541–3549
- McGarvey KM, Van Neste L, Cope L, Ohm JE, Herman JG, Van Criekinge W, Schuebel KE, Baylin SB (2008) Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Res 68:5753–5759
- Mitchell JL, Leyser A, Holtorff MS, Bates JS, Frydman B, Reddy VK, Marton LJ (2002) Antizyme induction by polyamine analogues as a factor in cell growth inhibition. Biochem J 366:663–671
- Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE (1994) Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res 54:2552–2555
- Putti TC, El-Rehim DM, Rakha EA, Paish CE, Lee AH, Pinder SE, Ellis IO (2005) Estrogen receptor-negative breast carcinomas: a review of morphology and immunophenotypical analysis. Mod Pathol 18:26–35
- Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556

- Roh TY, Cuddapah S, Zhao K (2005) Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev 19:542–552
- Schulte JH, Lim S, Schramm A, Friedrichs N, Koster J, Versteeg R, Ora I, Pajtler K, Klein-Hitpass L, Kuhfittig-Kulle S, Metzger E, Schule R, Eggert A, Buettner R, Kirfel J (2009) Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res 69: 2065–2071
- Shi Y, Lan F, Matson C, Mulligan P, Whetstine J, Cole P, Casero R, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953
- Snowden AW, Gregory PD, Case CC, Pabo CO (2002) Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 12:2159–2166
- Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903
- Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138: 1019–1031
- Wei G, Hobbs CA, Defeo K, Hayes CS, Gilmour SK (2007) Polyamine-mediated regulation of protein acetylation in murine skin and tumors. Mol Carcinog 46:611–617
- Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486
- Yan L, Nass SJ, Smith D, Nelson WG, Herman JG, Davidson NE (2003) Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-alpha (ER) in ER-negative human breast cancer cell lines. Cancer Biol Ther 2:552–556
- Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE (2001) Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res 61:7025–7029

